CONGENITAL DISEASES

Clinic of Orthopaedics and Paediatric Orthopaedics

Clubfoot - General

- 1 per 1,000 live births
- 65% male, 35% female
- 30 50% bilateral
- cause unknown: genetic neurogenic viral infection

Physical examination

- Associated anomalies
- Abnormal reflexes
- Clubfoot examination Knee flexion and extension Equinus assesment

Congenital talipes equinovarus

- Forefoot adduction & supination
- Hindfoot equinus & varus
- Talar neck deformity
- Medial rotation of calcaneus
- Shortened muscles, capsule, ligaments, fascia

classification

classification

Treatment objectives

- Primary correct deformity while retaining mobility and strength
- Secondary wear normal shoes & satisfactory appearance

untreated clubfoot (Nicaragua)

Neglected clubfeet (Uganda)

Prenatal Diagnosis

2-D Ultrasound

3-D Ultrasound

Prenatal diagnosis

Clubfoot Treatment Options

serial casting

surgical release

gradual distraction - external fixator

gradual distraction with external fixator

External fixator

- Fixed deformity
- Older children
- Salvage procedure

Serial casting

Dangers of manipulation and casting....

rocker bottom foot Pressure ulcer

Conventional Serial Casting

- multiple techniques
- serial casting for 3 months
- "resistant" feet undergo posteromedial release
- kite & lovell 22m

Posteromedial Release

- Achilles tendon
- CFL
- Post TaloFibular ligament
- Tibialis posterior tendon
- FDL tendon
- FHL tendon
- Superficial deltoid
- capsule

Posteromedial Release (PMR) Standard of Care

Posteromedial Release

scarring of the feet after posteromedial release leads to pain and disability in adult life

disappointing results in long-term studies (Green, Aronson, Hutchins)

Bilateral skin slough after PMR

Club Foot Treatment by the Ponseti Method

Ponseti's method

Ignacio V. Ponseti

University of Iowa

Ponseti's Protocol

- manipulate, then cast
- first cast: raise first metatarsus
- never pronate the foot, pure abduction
- counter pressure on neck of talus, not calcaneus
- long leg cast, externally rotated
- weekly cast for 4-7 weeks
- Achilles tenotomy (90%)
- Foot Abduction Orthosis (DB bar)
- ≈20% need Tib. Ant. transfer ± repeat TAL at 2–4 years

Ponseti's Technique

first cast: raise first metatarsal up to align forefoot with hindfoot and to diminish cavus

Ponseti's Technique

Never pronate the foot.

(Pronation increases the cavus)

Ponseti's Maneuver

pure abduction (external rotation)

- Thumb on talar neck
- Abduct forefoot

Ponseti's Technique

Manipulate for about one minute, then cast.

Ponseti Manipulation

Never pronate!

Ponseti's Technique

long leg cast, externally rotated

Ponseti's Technique

Short leg casts are ineffective, and may fall off.

weekly cast for 4–8 weeks, then Achilles tenotomy, then cast for 3 more weeks

Percutaneous tenotomy (not TAL)

maximum dorsiflexion before and after tenotomy

After tenotomy, cast for 3 weeks in dorsiflexion.

X-rays before and after tenotomy

scar after percutaneous tenotomy

Foot Abduction Orthosis [Denis Browne bar] full-time for 3 months, then nights only for 2 - 4 years

F.A.O. externally rotated 70° clubfoot, 45° normal foot

shoes with modified heel

typically in non-compliant families

under age 2recast for 2-3 casts, then back into DB bar

over age 2recast for 1-2 casts (every two weeks), then do Anterior Tibialis tendon transfer and TAL some may need posterior capsulotomy

10-20% need tibialis anterior tendon transfer at 2–4 years

Ponseti Clubfoot Treatment in Older Infants for Whom Traditional Casting Has Failed

John E. Herzenberg, MD Noam Bor, MD Steven L. Frick, MD Baltimore, MD Afula, Israel Charlotte, NC

Materials and Methods

- N = 21 children (32 feet) with idiopathic clubfoot presented for 2nd opinion
- •Age = 3 6 months
- 17/21 were told by original orthopaedist to undergo PMR
- 11/21 learned about Ponseti method from the Internet

3 mo. old boy s/p 7 casts at a children's hospital

Results

Only 1/32 (3%) feet required PMR

 32/32 (100%) required percutaneous Achilles tenotomy at average age of 6 months (range, 3–10 months)

 Average no. of Ponseti casts we applied before tenotomy = 6 (range, 3–10 casts)

- Two have required anterior tibialis transfer
- 3/32 needed repeated casting for relapse

3.5 month old girl after 6 casts at a children's hospital...

...4 months s/p 5 Ponseti casts + tenotomy 3 mo. old boy s/p 5 sets of casts at a children's hospital

After 5 Ponseti casts + tenotomy

30 week preemie

BW = 1000 grams

Bilateral TEV

Casted weekly for 6 months at a major children's hospital...

Advised to have PMR...

Parents read about Ponseti on Internet...

Referred for 2nd opinion at age 7 months

After 4 Ponseti casts + tenotomy.....

1/21 needed PMR

4 mo. old girl s/p 5 casts by local orthopaedist
* despite Ponseti casting x 6, PMR required

Ponseti's Protocol

- manipulate, then cast
- first cast: raise first metatarsal to align forefoot with hindfoot and to decrease cavus
- never pronate the foot, pure abduction
- counter pressure on neck of talus, not calcaneus
- long leg cast, externally rotated
- weekly cast for 4-7 weeks
- Achilles tenotomy (90%), then cast for 3 more weeks
- Foot Abduction Orthosis (DB bar), external rotation 70° clubfoot, 45° normal foot
- FAO full-time for 3 months, then nights for 2-4 years
- ≈20% need Tib. Ant. transfer ± repeat TAL at 2–4 years

initial

3 months

derotation splinting 2 years

Idiopathic Clubfoot – Is Posteromedial Release Necessary?

CLUB FOOT CONSERVATIVE TREATMENT OPPORTUNITY

GOALS

Reproduce Iowa's experience.

- Normal apearence, plantigrade, functional pain free, shoeable
- Normal X Rays not attainable
- We still use it

BASICS OF THE TECHNIQUE

• Orthopaedic treatment (weekly cast change)

- Talus **Reduction**
- Minimal surgery (PATT)
- Bracing after correction
 70° external rotation

 Simultaneous treatment of all components

cavus, adduction and varus

Gentle and progresive manipulations

supination - abdu stabilizing the

ORTHOPAEDIC TREATMENT

- Well-molded plaster casts (long casts)
- The equinus corrected by dorsiflecting the foot after the varus and adduction of the heel have been corrected

ORTHOPAEDIC TREATMENT

BRACING

- Maintains the correction and avoids relapses
- Day and night for 3 4 months
- During sleep for 4 years (nights and naps)
- Shoes distance = length between baby's shoulders

PIRANI - CATTERALL ASSESSING LOOK

PIRANI - CATTERALL ASSESSING FEEL

PIRANI - CATTERALL ASSESSING MOVE

PONSETI METHOD

SURGERY

- Percutaneus Tenotomy : 75 feet (99%)
- Posteromedial Release : 1 foot (1%)

• 8/50 16%

• Age : Average 17m (10m - 25m)

- Uncooperative patients
- 3/8 with family agregation

1/8 surgery (ATT)
12.5% 2% (1/50)

• Uncooperative patient

• With family agregation

Newborn

14 m post tnt 6 casts 2003

Newborn

22 m 2002 11 casts 19 m post tnt

22 m 2002 11 casts 19 m post tnt

22 months

WHY WE CHOSE PONSETI'S M?

- Minimally invasive
- Short learning curve
- Unexpensive

- Short period of treatment
- Can be used with images or no
- Can be assessed by Pirani classification
- gives: parents doctors satisfaction

Congenital Clubfoot

RIBERA (1591 - 1652)

MUSCULAR IMBALANCE is caused by:

 -Over-activity (contracture) – invertors and plantarflexors central lesions (CP)
 -Reduced activity (atrophy) – evertors and dorsiflexors spinal / peripheral nerve / myopathic lesions
 - COMBINATIONS of: teratology + paralysis + spasticity (MMC)

Basic clinical appearence - combination of

- equinus
- varus
- adduction
- supination
- cavus

— Hindfoot

>Forefoot

Different expression acc to:

🔶 -aetiology

-severity

-time factor

Aim of the treatment – similar to idiopathic CF: Ambulantory pts. - permanent plantigrade weigth-bearing foot without pressure sores and callosities -Remain functional ROM of joints -Restore the muscle balance Non-ambulatory pts. – shoe wearing

Treatment strategy: a) conservative treatment – beginning A.S.A.P.

- manipulation and casting techniques
- static and dynamic AFO / KAFO orthoses
- insoles

c) Surgical treatment - in addition or instead of - strategy is modified acc. to the aetiology

Aetiology for the treatment strategy:

- 1. Spasticity
- 2. Myelodysplasia
- 3. Arthrogryposis
- 4. Progressive Neuromuscular diseases and flaccid paralysis

Patients in Orthop. Univ. Hospital

- CP
- Myelodysplasia
- Arthrogyposis
- Progressive N-M diseases and flaccid paralysis

24 pts. 15 pts. 11 pts.

20 pts.

Spastic CF – mostly in hemiplegia, develops later (1,5 - 4 y).

++ activity of invertors (TP + TA)
++ activity of Triceps surae
-- activity of peroneal muscles

Conservative treatment -manipulation and bracing -KAFO -BOTOX

poorly tolerated and not long term efficient

SURGICAL TREATMENT delayed - brace wearing and standing

Walking on lateral border Painfull callosities Foot drop in swing phase

Surgical treatment of spastic CF

Dynamic -possible correction to a neutral position - tendon surgery Fixed
 -impossible correction
 - soft tissue + bony surgery

Tendon surgery: lengthening and transfers acc. to activity: -Triceps surae – lengthening (acc. Silfverskiold test) -Tibialis posterior x Tibialis anterior hindfoot varus forefoot supination (Confusion test, Passive manipulation, Gait pattern, EMG and gait analysis)

Surgical treatment of spastic CF – dynamic deformity Tibialis posterior surgery (hindfoot varus): - TP tendon lengthening (Z or intramuscular) - mild deformities only, recurrence is often

- Split TP tendon transfer -- peroneus brevis (complication - recurrent varus, overcorrection in older patients)

- <u>Anterior transfer of TP</u> cuneiform II.-III. very efficient
- mainly for hemiplegia
- strictly selected cases with sufficient other plantar flexors (complication- overcorrection – calcaneovalgus foot)

Surgical treatment of spastic CF – dynamic deformity Tibialis anterior surgery (Forefoot supination):

- split TA tendon transfer - to cuboid bone

 whole TA tendon transfer to dorsum midline or cuboid (acc. to activity of peroneal muscles)

-split TA tendon + split TP tendon transfer / other combinations

Surgical treatment of spastic CF – fixed deformity Bony surgery + tendon procedures (muscle balance)

-Heel varus – Dwyer osteotomy - lateral closed wedge -translation osteotomy

-heel varus and midfoot supination and cavus—
 - combination with midfoot / metatarsal ostetomies

severe rigid complex deformities
-triple subtalar artrodesis in adolescents

MMC and myelodysplasia- clubfoot Common deformity (30%), very rigid

- irrespective of level of lesion
- muscle imbalance ?
- teratologic deformity

Manipulation and casting – A.S.A.P., similar to idiopathic CF ! pressure sores and fractures !

Surgical treatment: in point of brace wearing and standing Choice of procedure: -tendon lenthening and Tibialis Ant. transfer to the midline

- - lower lesion, mild deformity

T.S., 12 y lipomeningocoele

MMC and myelodysplasia CF

-Extensive subtalar release + tendon transection (TP,TA, Flexors) – upper lesions and rigid deformities

bilateral ESR

MMC clubfoot – bony surgery Very rigid deformities, without correction

-talar enucleation (Verebeley-Ogston) – no experience

-talectomy - corection of hind foot, no forefoot deformity SATISFIED RESULTS acc. our experiences

MMC clubfoot – bony surgery - adolescence Triple arthrodesis of subtalar joints – strictly plantigrade position – to avoid pressure sores

-Aftertreatment:

-Casting - meticulous and short - necroris and pressure sores

- fractures from inactivity:
- orthoses toxo-alergic reaction
- -- walking ability prevention of reccurence

Arthrogyposis and Artrogryposis-like syndroms - clubfoot Usual deformity, very rigid Severe calf atrophy, lack of flexion creases Tendons fibrosed within sheats Joints severely fibrosed

Treatment:

Manipulation and casting – early, similar to idiopathic CF

-partial correction - (varus and adductus)

Surgical correction in prewalking age

- Posterior release in mild deformities
- Extensive subtalar release + event. tendon resection
- + lateral column shortening

- 1. osteotomies of the midfoot / forefoot
- 2. Ilizarov method without / with osteotomy
- 3. talectomy

- 4. triple arthrodesis of subtalar joints

- 5. supramaleolar osteotomy

Clubfoot in progressive neuromusculare disorders

Myopathy -developing of equinus / equinovarus deformities due to muscle imbalance Treatment: -Conservative – daily passive stretching + KAFO -Surgical (acc. type of myopathy – Shapiro and Specht, 1996)

- Achilles tendon lentghening + event. anterior transfer of Tib.Post. tendon.

- recurrence of deformities and walking ability – acc. to type of

myopathy

Neuropathic disorders -S M A and flaccid paralysis (trauma, TU) -equinus or equinocavovarus deformity

- -treatment acc. to imbalance
- -and main principals
- -(transfers,OT, arthrodesis)
- -HMSN
- Friedreich ataxia

- progressive cavus and cavovarus deformity: (=equinus deformity of forefoot - calcaneus in dorsiflexion

- equinus of hindfoot – exceptionally **ACHILLES TENDON lengthening** after Steindler procedure

Results - Factors influencing:

- surgical method - aetiology - cooperation

Evaluation criteria - ? - Kling, 1985 - position, callosities, shoe-wearing

- excellent : plantigrade, no callosities, normal shoes
- good: some deformities (5 deg.), no callosities, normal shoes
- poor: recurrence x over-correction, calluses, compromise with shoes

Our results:

Excellent and good results - 75-81% after 1st. surgical proc.
19 - 25% - repeated surgery for:
- residual deformities - recurrence - over-correction

Conclusions

- 1. Treatment of neurogenic clubfoot: various conservative and surgical options acc. to:
- -- particular analysis of deformity and severity
- -- aetiology
- -- age
- 2. Soft tissue procedures are preferred to restore muscular balance + preserve foot mobility
- 3. Avoid over-correction due to muscle transfer-reversal deformity 4. Patients and parents should be informed about the impossibility to achieve a normal foot, because of permanent neurological impairment and possible recurrence of deformity.

Split tibialis posterior tendon transfer and tendo-Achillis lengthening for spastic equinovarus foot Cerebral palsy (CP) is a childhood condition in which there is a motor disability (palsy) caused by a static, nonprogressive lesion in the brain (cerebral).

The causative event has to occur in early childhood usually defined as less than 2 years of age. Children with CP have a condition that is stable and non-progressive; therefore, they are in most ways normal children with special needs.*

Equinovarus deformity

Common in children with CP (38% hemi-, 20% diplegic*)

Hamper ambulation – the gait cycle (foot, knee, hip)

Muscles imbalance – inventors of the foot (tibialis posterior and anterior muscle) overpower evertors (overactivity of TP 86% in EMG**)

The gait pattern becomes less effective and needs more energy.

Abnormal weight bearing \rightarrow fixed foot deformity \rightarrow painful callosities

Type of treatment

- 1) Anterior transfer of tibialis posterior (PT) tendon throught the interosseus membrane (Baker & Hill)
- 2) Intramuscular lenghtening of the PT (Frost)
- 3) Z-lenghtening of the PT
- 4) Split PT tendon transfer (Kaufer, later Green and Kling)

The aim of the study

Evaluation of the effect split tibialis posterior tendon transfer on peroneus brevis in it's distal part and Tendo-Achillis lengthening for spastic equinovarus feet.

Material and methods

19 ambulatory patients from 136 cp children who underwent foot surgery.

hemiplegia – 12 pts,

diplegia – 7pts

split tibialis posterior tendon transfer together with tendo - Achillis lengthening in all pts was perform simultaneously.

4 feet – additionally – plantar aponeurosecectomy

The study was based on clinical examination, parents' questionnaire, radiology.

The mean age at the surgery was 13.9 (range: 9-17)

The mean follow up was 4.6 years (range: 2 - 7 years)

Material and methods

The functional improvement was observed in 17 (89%) children with tendon transfer.

At the last follow up those patients were brace free, with plantigrade foot while walking and normal shoes were used.

Results

All painful callosities disappeared.

Results

On a standing AP X-ray adequate correction of the hindfoot-forefoot relation was achieved in 14 (74%) cases.

Persistent equinovarus deformity over 10 degrees was observed in 2 cases. Those patients underwent additional bone surgery.

Conclusion

With a properly planned approach the split tibialis posterior tendon transfer can bring good clinical and functional results in CP children with equinovarus deformation.

We recommend this procedure in early stage of the deformity what can eliminate more harmful triple arthrodesis in severe deformities.

In early stage of the deformity – passive foot correction is possible

INTRODUCTION

The congenital clubfoot is often seen in orthopaedic practice. This deformation is easy to diagnose after birth, but proper treatment is not always applied after delivery. Late treatment makes the final result worse.

TREATMENT

OPERATIVE

TREATMENT

1. Posterior release with TAL

2. Postero-medial release - McKey technique

3. Postero-medial and lateral release Cincinnati incision

 Posterior release with Achilles tendon lengthening

*Good forefoot correction *Achilles tendon contracture *Calcaneus in supination

 Postero-medial release - McKey technique

- Postero-medial and lateral release
- Cincinnati incision

Magone at al. classification system (JPO 1989;9:49-58)

* very good = 21.6%
* good = 29.3%
* satisfactory = 26.7%
* poor = 22.7%

• VERY GOOD - 21,6 %

• GOOD - 29.3%

• Satisfactory - 26.7%

RESULTS • **Poor - 22,7%**

COMPLICATIONS

- not adequate foot correction
- wound healing problems
- tendons injury (FHL,FDL)
- K-wire migration
- neurovascular

COMPLICATIONS

COMPLICATIONS

 Arthrotic changes was common seen after the surgery

PROBLEMS

PROPER INDICATION FOR SURGERY
 SURGEONS EXPERIENCES MANDATORY
 EARLY CONSERVATIVE TREATMENT
 REGULAR FU

CONCLUSIONS

1.Treatment of congenital clubfoot is difficult2.High level of experience is required3.The conservative treatment is necessary4.The proper indication for the type of surgery

THE ALALYSIS OF COMPLICATION AFTER SURGICAL TREATMENT OF CONGENITAL CLUBFOOT

The surgical treatment of congenital clubfoot is difficult and connected with relatively high risk of complications

MATERIAL & METHODS

Years : 1966 - 2005

567 feet operated by different methods :

- 1. Posterior release with TAL
- 2. Postero-medial release McKey technique
- **3. Postero-medial and lateral release** *Cincinnati incision*

MATERIAL & METHODS

Mean age at the surgery :

17.5 months

(from 5 months to 7 years)

MATERIAL & METHODS

111 COMPLICATIONS

MATERIAL & METHODS

* recurrence of foot deformation* problems with walking

* K-wire migration

* Poor surgical technique:

- *surgery performed by many surgeons
- * not enough experiences

* Injury of the anatomical foot structure :

- * injury of FDL
- * injury of FHL
- * injury of TA
- * damage of the tibial artery
- * not enough skin to cover the wound

MATERIAL & METHODS

111 COMPLICATIONS

Problems with wound healing

skin necrosis

Skin necrosis

(K-wire removed)

Necrosis

after tibialis artery injury

K-wire migration

recurrence of foot deformation

Degenerative arthritis changes

- 1. Treatment of congenital clubfoot is connected with a high risk of complications
- 2. The good knowledge of foot anatomy as well as surgical procedures is essential to obtain satisfactory results

Amniotic bands syndrome and clubfoot

OUR MATERIAL

Material

- All feet were operativelly treated by subtalar release (19 children) or TAL with posterior release (7 children).
- In the treatment amniotic bands were treated first by skin Z plasty, followed by foot surgery

RESULTS

RESULTS

* 25% very good
* 34% satisfactory
* 41% poor

RESULTS

Very good results were observed when the amniotic bands were located at the femur region

Satisfactory results were observed when amniotic bands were located in proximal 1/3 of the calk and were shallow.

Deep amniotic bands with full circle of the calf located in distal 1/3 of the calf resulting in poor results.

Hypoplasia of extremity

Radiographic Features

Deformity – Valgus Knee and Ankle

Deformity – Forearm

Deformity – Forearm

Mal. Trasformation 1-3%

Historical Reports 5 - 25%

Pathology of Exostosis: Gross Aspect

Pathology of Exostosis: Microscopic Features

Pathology of CHS: Microscopic Features

Grade 1

Grade 3

N = ?

CONGENITAL DISEASES

CONGENITAL DISEASES

CONGENITAL DISEASES

